智慧营区人脸布控系统

来源:誉澄智能 2021/3/11 9:05:51      点击:

人脸布控系统

1、  人脸概述

人脸识别技术是基于人的脸部特征,对输入的人脸图像或视频流,首先判断是否存在人脸,如果存在人脸,则进一步的给出每个脸的位置、大小和各个面部器官的位置信息,并依据这些信息,进一步提取每个人脸中所蕴涵的身份特征,并将其与已知的人脸进行对比,从而识别每个人脸的身份。

人脸与人体的其它如指纹、掌纹、虹膜、视网膜等具有唯一生物特征性,它的唯一性和不易被复制的良好特性为身份鉴别提供了必要的前提,与其它类型的生物识别比较人脸识别具有如下特点:

非强制性:用户不需要专门配合人脸采集设备,几乎可以在无意识的状态下就可获取人脸图像,这样的取样方式没有“强制性”;

非接触性:用户不需要和设备直接接触就能获取人脸图像;
并发性:在实际应用场景下可以进行多个人脸的分拣、判断及识别;

视觉特性:“以貌识人”的特性,操作简单、结果直观、隐蔽性好;

人脸识别技术主要包括四个组成部分:人脸图像检测及采集、人脸图像预处理、人脸图像特征提取以及人脸特征数据匹配与识别。

人脸图像采集及检测:基于人的脸部特征,对输入的人脸图像或视频流,首先判断是否存在人脸,如果存在人脸,则进一步的给出每个脸的位置、大小和各个面部器官的位置信息。

人脸图像预处理:对于人脸的图像预处理是基于人脸采集及检测结果,通过人脸智能算法,对选择出来的人脸图片进行优化和择优选择,挑选当前环境下最优人脸并最终服务于特征提取的过程。其预处理过程主要包括人脸图像的光线补偿、灰度变换、直方图均衡化、归一化、几何校正、滤波以及锐化等。

人脸图像特征提取人脸识别系统可使用的特征通常分为视觉特征、像素统计特征、人脸图像变换系数特征、人脸图像代数特征等。人脸特征提取的方法归纳起来分为两大类:一种是基于知识的表征方法;另外一种是基于代数特征或统计学习的表征方法。基于知识的表征方法主要是根据人脸器官的形状描述以及他们之间的距离特性来获得有助于人脸分类的特征数据,其特征分量通常包括特征点间的欧氏距离、曲率和角度等。人脸由眼睛、鼻子、嘴、下巴等局部构成,对这些局部和它们之间结构关系的几何描述,可作为识别人脸的重要特征,这些特征被称为几何特征。基于知识的人脸表征主要包括基于几何特征的方法和模板匹配法。

人脸特征比对识别:通过采集到的人脸图片形成人脸特征数据,与后端人脸库中的人脸特征数据模板进行搜索匹配,通过设定一个阙值,相似度超过这一阈值,则把匹配得到的结果输出。这一过程又分为两类:一类是确认,是一对一进行图像比较的过程,另一类是辨认,是一对多进行图像匹配对比的过程。

2、    功能介绍

营区出入口进行人脸布控,可通过人脸识别系统识别,对于营区内部或者访客人员进行无感布控,通过黑白名单、人脸比对、人脸识别等功能实现对营区进出人员的统计。

可通过手动或自动批量导入手段将高危人员信息导入至人脸注册库中,通过摄像机实时视频检测和照片信息检索,与人脸注册库内人脸进行实时比对识别,在出现非法人员时通过平台告警布控。

3、 设备组成