OpenCV是如何实现人脸检测的?
OpenCV中有检测人脸的函数(该函数还可以检测一些其他物体), 甚至还包含一些预先训练好的物体识别文件。
所以利用这些现成的东西就可以很快做出一个人脸检测的程序。
主要步骤为:
1.加载分类器。
用cvLoad函数读入xml格式的文件。文件在OpenCV安装目录下的“data/haarcascades/”路径下。
2.读入待检测图像。读入图片或者视频。
3.检测人脸。
#include "cv.h"
#include "highgui.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <math.h>
#include <float.h>
#include <limits.h>
#include <time.h>
#include <ctype.h>
#ifdef _EiC
#define WIN32
#endif
static CvMemStorage* storage = 0;
static CvHaarClassifierCascade* cascade = 0;
void detect_and_draw( IplImage* image );
const char* cascade_name =
"haarcascade_frontalface_alt.xml";
/* "haarcascade_profileface.xml";*/
int main( int argc, char** argv )
{
cascade_name = "haarcascade_frontalface_alt2.xml";
cascade = (CvHaarClassifierCascade*)cvLoad( cascade_name, 0, 0, 0 );
if( !cascade )
{
fprintf( stderr, "ERROR: Could not load classifier cascade\n" );
return -1;
}
storage = cvCreateMemStorage(0);
cvNamedWindow( "result", 1 );
const char* filename = "Lena.jpg";
IplImage* image = cvLoadImage( filename, 1 );
if( image )
{
detect_and_draw( image );
cvWaitKey(0);
cvReleaseImage( &image );
}
cvDestroyWindow("result");
return 0;
}
void detect_and_draw(IplImage* img )
{
double scale=1.2;
static CvScalar colors[] = {
{{0,0,255}},{{0,128,255}},{{0,255,255}},{{0,255,0}},
{{255,128,0}},{{255,255,0}},{{255,0,0}},{{255,0,255}}
};//Just some pretty colors to draw with
//Image Preparation
//
IplImage* gray = cvCreateImage(cvSize(img->width,img->height),8,1);
IplImage* small_img=cvCreateImage(cvSize(cvRound(img->width/scale),cvRound(img->height/scale)),8,1);
cvCvtColor(img,gray, CV_BGR2GRAY);
cvResize(gray, small_img, CV_INTER_LINEAR);
cvEqualizeHist(small_img,small_img); //直方图均衡
//Detect objects if any
//
cvClearMemStorage(storage);
double t = (double)cvGetTickCount();
CvSeq* objects = cvHaarDetectObjects(small_img,
cascade,
storage,
1.1,
2,
0/*CV_HAAR_DO_CANNY_PRUNING*/,
cvSize(30,30));
t = (double)cvGetTickCount() - t;
printf( "detection time = %gms\n", t/((double)cvGetTickFrequency()*1000.) );
//Loop through found objects and draw boxes around them
for(int i=0;i<(objects? objects->total:0);++i)
{
CvRect* r=(CvRect*)cvGetSeqElem(objects,i);
cvRectangle(img, cvPoint(r->x*scale,r->y*scale), cvPoint((r->x+r->width)*scale,(r->y+r->height)*scale), colors[i%8]);
}
for( int i = 0; i < (objects? objects->total : 0); i++ )
{
CvRect* r = (CvRect*)cvGetSeqElem( objects, i );
CvPoint center;
int radius;
center.x = cvRound((r->x + r->width*0.5)*scale);
center.y = cvRound((r->y + r->height*0.5)*scale);
radius = cvRound((r->width + r->height)*0.25*scale);
cvCircle( img, center, radius, colors[i%8], 3, 8, 0 );
}
cvShowImage( "result", img );
cvReleaseImage(&gray);
cvReleaseImage(&small_img);
}
流程说明:
原始待检测图像经过resize,生成不同尺寸的图像构建图像金字塔作为网络的输入。
构建的图像金字塔,其层数由两个因素决定,第一个是设置的最小人脸minSize,第二个是缩放因子factor,最小人脸表示min(w,h),论文中说明最小人脸不能小于12,给出的缩放因子0.709可以根据公式计算图像金字塔的层数
minL=org_L*(12/minsize)*factor^(n),n={0,1,2,3,...,N}
其中n就是金字塔的层数,org_L是输入原始图像的最小边min(W,H),minisize是人为根据应用场景设定,在保证minL大于12的情况下,所有的n就构成金字塔的层。所以minsize的值越小,n的取值范围就越大,计算量就相应地增加,能够检测到的人脸越小
- 上一篇:如何确认停车场系统产品是否是停车场系统设备厂家自己生产的呢? 2020/5/8
- 下一篇:上海医院是如何用人脸识别系统赶走黄牛的 2020/5/6